

Coastal Sustainability ?

Close to 4 billion people two-thirds of humanity live within 400 km of a seacoast. Roughty 3.1 billion people - hait of the

world's population - lives within 200 km of a coast, occupying only 10 per cent of the earth's land surface

This population is growing at 5 to 6 % per

Coastal Sustainability ?

- With increasing population pressure within the coastal zone it is imperative that we properly manage our coastal resources to protect the environment, people and property against:
 - Natural Hazards
 - Environmental Degradation
 - Economic Devaluation

Sustainability through Mitigation

- Through informed decision making, planning and management the potential impacts posed by natural and man-made hazards can be minimized through mitigation that recognizes:
 - The underlying natural hazards and the dangers they pose; and
 - The reduction in risk versus the economic and social cost of change.

The Hazard Mitigation Process

- 1. Community Profile Development
 - Current Land Use
 - Population Demographics
 - Value of the Built Environment
 - Identification of Vulnerable and Critical Facilities
- . Hazard Identification
 - Characteristics of Potential Hazards
 - Recent Event Analysis (Impact and Costs)

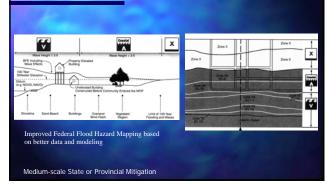
The Hazard Mitigation Process

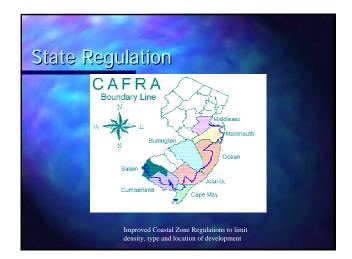
- 3. Risk Assessment
 - Probability of Occurrence
 - Probable Impacts
- 4. Vulnerability Assessment
 - Estimation of Population and Value at Risk
 - Assessment of Relative Risk to each Hazard
 - Weighting of Risk relative to:
 - Area Impacted
 - Health and Safety Consequences
 - Economic ImpactsProperty Impacts
 - Environmental Impacts

The Hazard Mitigation Process

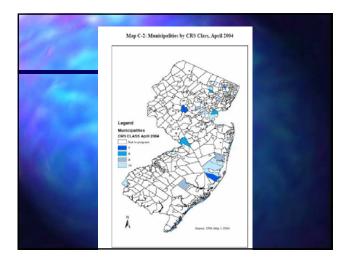
- 5. Development of an All-Hazard Mitigation Strategy
 - Identification of Sound Mitigation Projects
 - Positive Cost/Benefit Ratio
 - Sustained Planning and Maintenance Effort
 - Private and Public Participation/Efforts

Coastal Hazard Mitigation

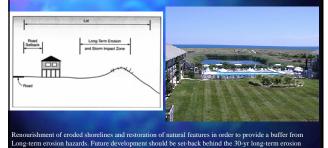

- Hazard reduction can be achieved along many different scales
 - Large-scale National Projects that are tax funded
 - Medium-scale State or Providence initiated
 - Local Government sponsored
 - Grassroots/Property Owner initiated
- Scale of Mitigation depends on the level of residual risk that is acceptable in contrast to the value of the infrastructure /resource being protected.

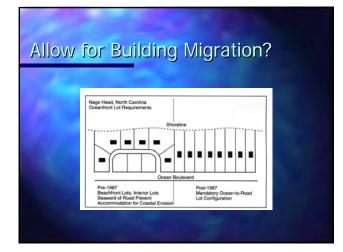

Hazard Mitigation Techniques

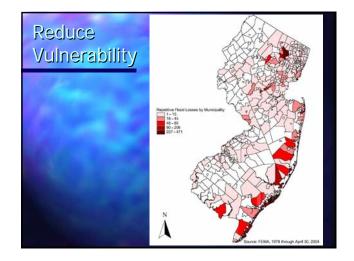
Regulation

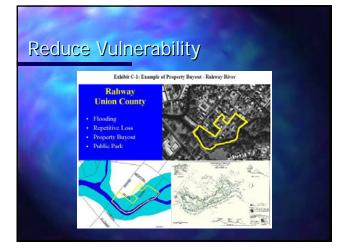

- Removal of Vulnerability ("Buyout")
- Structural Protection
- □ Soft Coastal Protection
- □ Improved Building Design
- Improved balance Design
 Natural Resource Restoration and Management ("The New Orleans Example")
 Research, Outreach and Public Education

Federal Regulation






Table (-2: Community I	Rating System Class	sifications
Credit points earned, cli in the National Flood In	assification awarded,	and premium reductio mmunity Rating System	ns given for comm n.
			n Reduction
Credit Points	Class	SFHA*	Non-SFHA
4,500+	1	45%	596
4,000 - 4,499	2	40%	596
3,500 - 3,999	3	35%	596
3,000 - 3,499	4	30%	596
2,500 - 2,999	5	25%	596
2,000 - 2,499	6	20%	596
1,500 - 1,999	7	15%	596
1,000 - 1,499	8	10%	596
500 - 999	9	5%	596
0 - 499	10	0	0



Restoration of Natural Coastal Features and Building Set-back

Structural Coastal Protection

Hard coastal structures have been utilized to stabilize or limit the recession of an eroding shoreline. Generally a Large- or Medium-scale Mitigation Technique.

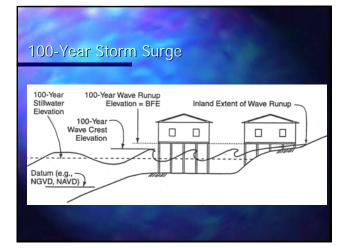
Without the addition of sand, this mitigation practice eventually exacerbates the erosion problem leading to a loss of coastal resources and a devaluation of the coastal zone.

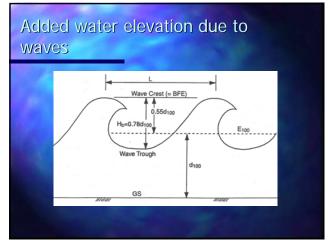
Flood Control Structures

Soft Coastal Protection

Beach Nourishment recreates lost coastal resources but does not stop the Underlying erosion. The restored resource must be maintained through periodic Renourishment and local coastal management.

Genrally Beach Nourishment is a Large-scale mitigation technique due to the high cost

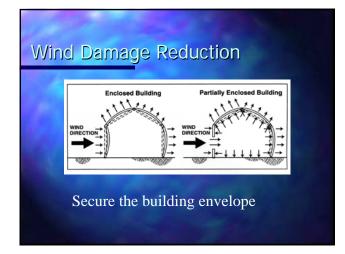

Improved Building Design



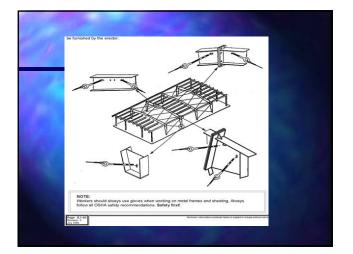
Understanding the evolution of Multiple Coastal Hazard Levels over the life of coastal structures allows for improved building designs. Elevating structures a few feet above the maximum potential water level provides a buffer against future sea level rise and long-term shoreline recession. Stronger connections at roof and wall plates and storm shutters hardens the building envelop against wind damage.

Small-scale Homeowner Mitigation

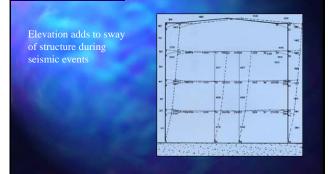
In Flood Prone Areas: Elevate!

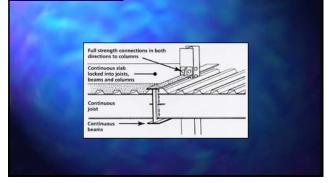


6



Including Important Access Roads

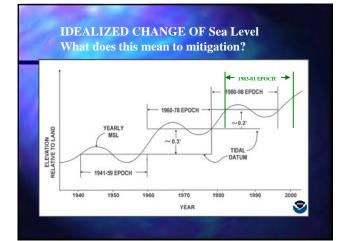



Install Shutters to reduce impact damage and breaching

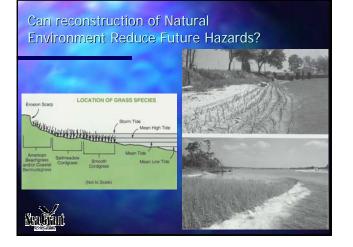
Earthquake Conundrum

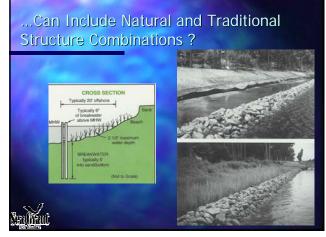
Shear Resistant Connections

Natural Resource Restoration

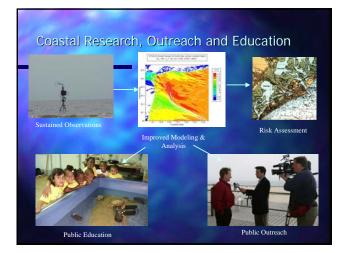

Grassroots level restoration of lost coastal resources through natural methods and plantings. Provides natural buffer and increased value of coastal zone for Relatively little cost. Note new home built seaward of the bulkhead line in violation of set-back ordinance.

Effective Management of Natural Areas




			Ν	umbe	r of In	ciden	ts per	Year	by Co	ounty	6			
County	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Totals	10 Year Average	Rat
Atlantic	219	171	226	126	214	224	206	155	232	250	163	2186	219	2
Bergen	15	9	5	1	7	8	8	6	232	4	5	\$1	8	17
Burlington	141	141	154	99	121	133	140	88	128	109	64	1318	132	4
Camden	57	3.6	110	55	13.8	126	145	124	143	103	- 45	1132	113	6
Cape May	45	72	129	59	86	71	84 173	50	92 140	\$0	40	\$11	81	9
Cumberland	151	152	191	93	151	206	173	100	140	102	58	1517	151	3
Gloucester	18	50 32	77	34 21	67	53	72	36 44	73	78	23 26	581	58	11
Hunterdon	55	32	72	21	37	28	69	44	66	41	26	491	49	15
Mercer		3	77 72 2 70				3		4	78 41 26 106	\$ +1	48	5	18
Middlesex	65	- 51	-70	18	- 54	50	87	62	106	106	+1	710	71	10
Monmouth	63	51 84	48	30	54 30 113	34	50 139	35	106 75 65	54 87	42	512	51	13
Moerris	146	84	137	62	113	99	139	58	65	87	63	1053	105	7
Ocean	355	313	452	196	347	304	412	265	374	287	227	3532	313	. 1
Passaic	51 24 79	51	66	17	37	50	71 24	29	61	39	21	493	49	14
Salem	24	32	76	22	36	47	24 65	10	38	37	15	361	36	16
Somerset Sussex	52	67	87	6 38	50 137	17 109	176	85	50 162	\$6 129	102	1144	56 114	12
Warran	54	60	64	33	1227	209	1/0	85	90	144	102	854	85	2
Total	1593					1653				144			82 1738	5
												to in its des		22

Seaside Park (Bay	/side)
Tidal Datum	
Lighest Observ	vel


Highest Observed (12/11/1992)	= 6.62 feet
MHHW	= 0.46 feet
MHW	= 0.39 feet
MTL	= 0.25 feet
NAVD88	= 0.24 feet
NGVD29	= 0.16 feet
MLW	= 0.01 feet
MLLW	= 0.00 feet
Lowest Observed (01/22/1985)	= -2.23 feet

